Le Puzzle de l'Avent 2019
Posté le 01/12/2019 11:47
Bienvenue à tous dans la période de l'Avent. Pour vous aider à attendre Noël, Planète Casio vous propose son calendrier aux 24 problèmes mathématiques et informatiques.
Le Puzzle de l'Avent de cette année est un jeu dans lequel vous devez résoudre des petits problèmes mathématiques et informatiques. Chaque jour, je vous donnerai des pièces du puzzle codées par un
code couleur. Votre tâche est de retrouver le code de chaque image et de les décoder ! À la fin du mois, les pièces se combineront pour former une
image de Noël.
J'ai demandé une Graph 35+E II à Casio pour récompenser la première personne qui résoud le puzzle. Casio a confirmé qu'ils sont d'accord, je pourrai donc envoyer le lot dès que je l'aurai reçu.
Voici l'énoncé précis du jeu !
Le but du jeu est de reconstituer intégralement l'image de Noël. Il s'agit d'une image de 128x64 pixels en quatre niveaux de gris (noir, gris foncé, gris clair, blanc). Il y a 128 pièces à ce puzzle, que je distribuerai tous les jours jusqu'à Noël.
Pour participer, envoyez-moi un MP avec votre image. La personne qui aura reconstitué le plus fidèlement l'image le 24 Décembre à 23h59 remportera le Puzzle et aura le titre de
Maître du Puzzle.
Toutes les personnes qui m'auront envoyé une participation ayant plus de 90% de pixels justes (soit 7372 sur 8192) auront également le titre.
Les pièces sont réparties en quatre cadrants comme ceci :
Contrairement à l'année dernière, les indices ne sont pas cachés, donc vous pouvez poser des questions et je vous répondrai dans une certaine mesure (sans révéler les résultats). Donc n'hésitez pas à demander dans les commentaires si vous avez du mal, je donnerai des explications !
Tous à vos postes, on commence maintenant !
Notes du futur.
• Le 23 Décembre, Filoji a reconstitué l'intégralité de l'image !
• La solution des problèmes est disponible au format PDF !
Liste des indices et pièces de l'image
1er Décembre
Pour les premiers jours, on va se concentrer sur le code couleur. Toutes les images, sauf la première, ont été un peu modifiées et bougées. Le
carré code à droite de chaque image indique quelle opération j'ai faite.
Les pièces ont été agrandies fois 2 (elles font 16x16 pixels au lieu de 8x8), je vous conseille de les réduire avant de commencer à travailler avec.
2 Décembre
Contrairement à hier, aujourd'hui les transformations se marchent un peu sur les pieds. Il faut donc trouver la bonne façon de les combiner...
Sinon le principe est exactement comme hier. Si vous avez déjà utilisé des couleurs en programmation, ça vous posera pas de problème.
3 Décembre
Il n'y a rien de vraiment nouveau, mais parfois durant les problèmes j'aurai besoin de transformer les pièces plusieurs fois.
4 Décembre
Vous avez déjà tous les éléments concernant le fonctionnement du code couleur. Désormais, on va jouer un peu avec des problèmes de maths et d'informatique.
Attention, ne vous précipitez pas car j'ai
mélangé les carrés codes.
Pour retrouver qui va avec qui, voici une aide. L'image ci-dessous représente un
graphe, avec des
noeuds (les ronds) et des
arêtes (les traits). Les noeuds de gauche représentent les pièces d'aujourd'hui, les noeuds de droite représentent les carrés codes mélangés.
J'ai fait en sorte que chaque pièces à gauche soit reliée par une arête à son carré code à droite. Mais j'ai aussi rajouté des arêtes inutiles pour vous embêter.
Votre tâche est de retrouver l'unique façon de faire correspondre les pièces avec les carrés codes par des arêtes. Ça s'appelle un
couplage parfait.
5 Décembre
Cette fois, j'ai
mélangé les pièces. Pour retrouver l'ordre correct, vous devez trier les nombres inscrits à gauche des pièces par ordre de qui se divise le mieux. L'image à côté du nombre qui se divise le moins bien se décode par le carré code
#. L'image à côté du nombre qui se divise le mieux se décode par le carré code
O. Tout le reste est dans l'ordre, vous verrez qu'il n'y a pas d'ambiguité.
6 Décembre
Aujourd'hui, j'ai encodé toutes les pièces avec
le même carré code. Pour trouver lequel, utilisez le programme Python suivant. Vous devez chercher
n et
m de sorte que la fonction
A renvoie 61. Caclulez alors
n*m%6 et vous aurez le numéro du carré code à utiliser. (Ils sont numérotés de 1 à 6 de haut en bas).
def A(m, n):
if m == 0:
return n+1
elif n == 0:
return A(m-1, 1)
else:
return A(m-1, A(m, n-1))
7 Décembre
Là encore j'ai été sympa, j'ai tout codé avec le même carré code. Pour savoir lequel, utilisez le graphe ci-dessous. Dans ce graphe, il y a des
arêtes pleines et des
arêtes pointillées, et un noeud marqué par un double trait. Je prétends qu'il existe une suite de "plein" et de "pointillé" telle que peu importe d'où vous partez, si vous suivez des arêtes du type indiqué par la suite, vous arriverez toujours au noeud marqué.
Le numéro du carré code à utiliser aujourd'hui est la longueur de la plus petite séquence de "plein" et "pointillé" qui a cette propriété.
Cela s'appelle un
mot synchronisant.
8 Décembre
Pas d'indice, vous devriez trouver tous seuls quelle pièce a été encodée comment.
9 Décembre
Je continue sur mon format simple pour l'instant, j'ai tout encodé avec le même carré code (j'espère que ça vous simplifie un peu le travail). Lequel ? Tout est inscrit dans le graphe ci-dessous.
Ce graphe contient un certain nombre de
cliques. Une clique, c'est k sommets différents qui sont totalement reliés entre eux. Cela signifie que si vous regardez deux des sommets, il y a forcément une arête entre les deux. Pour avoir une clique de taille k, il faut donc que chacun des sommets soit directement reliés aux k-1 autres !
La taille de la plus grande clique dans ce graphe est le numéro du carré code à utiliser aujourd'hui. Et pour votre information, ce problème de la
clique maximale est très difficile à résoudre (on ne connaît pas d'algorithme rapide qui trouve la plus grande clique d'un graphe).
10 Décembre
Comme d'habitude, un des carrés codes a été utilisé pour coder toutes les image. Pour retrouver lequel, déterminez le chiffre des dizaines dans le prochain élément de cette suite suite relativement connue.
18, 9, 28, 14, 7, 22, 11, 34, 17, ?
11 Décembre
Le programme ci-dessous affiche le numéro (toujours entre 1 et 6) du bon carré code... si vous arrivez au bout.
def h(x):
return not not x and g(x - (not not x))
def g(x):
return not x or h(x - (not not x))
a = 67091015026795951534974163063551679485
b = 14869428421844477043415143396333267370
c = 18130045244705851716678308487239340348
d = 27737016800392073340078206984446832421
e = 27050830777865150327799699254308046502
f = 31380753929535438225805729259152129373
print(h(a) + g(b) + h(c) + g(d) + h(e) + g(f))
12 Décembre
Comme d'habitude, un seul carré code a été utilisé pour tout encoder. Aujourd'hui, ils sont numéros de 0 (le plus haut) à 5 (le plus bas). Pour savoir quel carré j'ai utilisé, trouvez un chemin le plus long possible de s à t dans le graphe ci-dessous, et calculez sa longueur modulo 6.
13 Décembre
Les pièces sont de nouveau numérotées de 0 à 5. Trouvez p et q non triviaux tels que p×q = 142941853471579. Le numéro de la pièce aujourd'hui est égal au modulo 6 de p. Pour vous aider, sachez que le modulo 6 de q doit désigner la même pièce.
14 Décembre
Comptez le nombre de triangles dans le graphe du 9 Décembre. Un triangle, c'est quand trois noeuds sont complètement reliés entre eux (une clique de taille 3). Le résultat modulo 6 est le numéro du carré code permettant de décoder les pièces d'aujourd'hui, comptées de 0 à 5.
Pour les gens très chauds type
Dark Storm : Compter le nombre de mineurs isomorphes à K₃. Programme fortement conseillé.
15 Décembre
Comptez le nombre de façons différentes d'obtenir 15 par somme de 5, 2, 1 (sans prendre l'ordre en compte). Par exemple, 5+5+2+2+1, ou 2+2+2+2+2+2+1+1+1. Le nombre de façons modulo 6 est le numéro du carré code d'aujourd'hui.
Pour les gends très chauds type
Dark Storm : Compter le nombre de façons, toujours sans prendre l'ordre en compte, mais avec le parenthésage. Par exemple, ((5+5)+(2+2))+1 ou ((5+5)+2)+(2+1).
16 Décembre
Les carrés code sont encore numérotés de 0 à 5. Pour trouver le bon, déterminez le nombre d'arêtes minimum qu'il faut enlever pour couper la grille de taille 5 (ci-dessous) en deux parties :
Ça s'appelle une
coupe minimum.
Pour les gens très chauds type
Dark Storm : Trouver la coupe minimum du tore n×n pour tout n.
17 Décembre
Prenez la liste [7,4,2,5,1,3,6]. Elle n'est pas croissante, mais en supprimant des éléments on peut la rendre croissante. Par exemple, si je supprime 7, 4, 5 et 1, il me reste [2,3,6] qui est croissante. On appelle ça une sous-liste croissante (rien de surprenant ici).
Comptez le nombre de sous-listes croissantes de [7,4,2,5,1,3,6].
Pour les gens très chauds type
Dark Storm : Caractériser le nombre de sous-listes croissantes de taille 2 dans la liste [σ(i) : 1 ≤ i ≤ n] pour σ ∈ Sn (permutations de {1..n}).
18 Décembre
Aujourd'hui on ne fait pas très intellectuel, voici les pièces et leurs carrés codes associés, comme les premiers jours. Rassurez-vous, c'est pas aussi méchant.
19 et 20 Décembre
Pas de codage pour aujourd'hui. On arrive à la fin !
21 Décembre
Comptez le nombre de faces de la rosace au dos de la Graph 35+E II !
Il s'agit du nombre de face sur la rosace complète (la Graph 35+E II étant rectangulaire, elle n'est pas imprimée entièrement). Vous pouvez le faire sans quitter votre chaise, y compris si vous n'avez pas de Graph 35+E II.
Calculez le nombre de faces modulo 157, 97, 79 et 71. L'un de ces modulos a une parité différente des autres, et il correspond au carré code à utiliser pour déchiffrer les 8 pièces centrales.
22 Décembre Il y a des schémas de la rosace dans le manuel.
23 Décembre À cause des symétries de la rosace, il suffit de compter environ 4% des faces.
Fichier joint
Citer : Posté le 04/12/2019 14:14 | #
Bravo pour tes 1000 points Breizh
Ajouté le 04/12/2019 à 15:09 :
Mis à jour le post principal, merci à @Filoji de me l'avoir rappelé.
Citer : Posté le 04/12/2019 15:51 | #
Il se passe plein de choses sur le chat ! Pour ne pas désavantager n'importe comment tout le monde, voici un indice qui y a été donné :
Les transformations du jour 1 sont toutes des involutions (si vous les faites deux fois vous retrouvez l'image d'origine).
Donc pas de cycles de couleurs...
Citer : Posté le 04/12/2019 15:52 | #
Si
Citer : Posté le 04/12/2019 15:53 | #
Je veux bien commenter sur cette remarque, mais je ne la comprends pas encore. :o
Citer : Posté le 04/12/2019 15:54 | #
Je veux bien commenter sur cette remarque, mais je ne la comprends pas encore. :o
Par exemple :
- Noir devient Gris foncé
- Gris foncé devient Gris clair
- Gris clair devient Blanc
- Blanc devient Noir
Citer : Posté le 04/12/2019 15:56 | #
Effectivement ce n'est pas une involution (c'est une transformation d'ordre 4) donc je n'ai pas fait ça.
Plus simple, plus simple !
Citer : Posté le 04/12/2019 15:56 | #
Mais plus simple, tu dis ça, j'ai l'impression que c'est trop simple mais que je suis con...
Citer : Posté le 04/12/2019 16:01 | #
Il y a une transformation qui fait une opération "classique" sur les couleurs et deux qui bougent les pixels sans changer les couleurs.
Citer : Posté le 04/12/2019 16:03 | #
C'est tellllleeemmmeennttt simple !!!
Citer : Posté le 04/12/2019 16:14 | #
Il y a une transformation qui fait une opération "classique" sur les couleurs et deux qui bougent les pixels sans changer les couleurs.
Ah, merci.
Alors l'opération "classique" est la première à laquelle j'ai pensé, et c'est la plus cohérente, maintenant il faut que je trouve les "déplacements".
Merci de cet aiguillage !
Citer : Posté le 04/12/2019 16:50 | #
J'ai connu cela, le deux autre se resemble mais un facteur diffère
J'ai passé beaucoup de temps dessus et maintenant j'ai compris, je pense donc que tu peut comprendre
Citer : Posté le 04/12/2019 16:59 | #
J'ai l'impression d'avoir trouvé, mais ça parait bizarre, combien de pièces du premier jour devraient s'assembler ?
Citer : Posté le 04/12/2019 19:09 | #
Toutes les pièces du premier jour se touchent.
Citer : Posté le 04/12/2019 20:42 | #
Ah, alors soit je me suis gouré, soit je suis aveugle, il va falloir que je revois ça j'en ai que 2 qui se touchent.
Citer : Posté le 04/12/2019 21:58 | #
J’ai toujours pas trouvé les codes couleurs
Mais je n’abandonnerai pas !
Citer : Posté le 05/12/2019 09:25 | #
Serait-ce un sapin?
Mon début y ressemble
Citer : Posté le 05/12/2019 09:26 | #
Il y a en effet un objet de la même famille représenté dans les pièces que j'ai données jusqu'à présent.
Ajouté le 05/12/2019 à 09:38 :
Pendant que j'y suis, voici les pièces pour aujourd'hui.
Cette fois, j'ai mélangé les pièces. Pour retrouver l'ordre correct, vous devez trier les nombres inscrits à gauche des pièces par ordre de qui se divise le mieux. L'image à côté du nombre qui se divise le moins bien se décode par le carré code #. L'image à côté du nombre qui se divise le mieux se décode par le carré code O. Tout le reste est dans l'ordre, vous verrez qu'il n'y a pas d'ambiguité.
Citer : Posté le 05/12/2019 15:37 | #
Donc la on a le rectangle complet ?
Citer : Posté le 05/12/2019 21:38 | #
Là on a fini la partie 1-5 Décembre comme annoncée dans le premier post.
J'espère que vous avez tous pu comprendre le fonctionnement du code couleur. Si non faites-moi signe, je pense que les solutions ne vont pas tarder à circuler.
Citer : Posté le 06/12/2019 22:37 | #
Et celui d'aujourd'hui ?
Citer : Posté le 06/12/2019 23:08 | #
Voilà pour aujourd'hui !
Aujourd'hui, j'ai encodé toutes les pièces avec le même carré code.
Pour trouver lequel, utilisez le programme Python suivant. Vous devez chercher n et m de sorte que la fonction A renvoie 61. Caclulez alors n*m%6 et vous aurez le numéro du carré code à utiliser. (Ils sont numérotés de 1 à 6 de haut en bas).
if m == 0:
return n+1
elif n == 0:
return A(m-1, 1)
else:
return A(m-1, A(m, n-1))
Point bonus si quelqu'un peut me dire quelque chose d'intéressant sur ce programme Python (mais pas avant Dimanche, pour ne pas casser l'épreuve).