Le Puzzle de l'Avent 2019
Posté le 01/12/2019 11:47
Bienvenue à tous dans la période de l'Avent. Pour vous aider à attendre Noël, Planète Casio vous propose son calendrier aux 24 problèmes mathématiques et informatiques.
Le Puzzle de l'Avent de cette année est un jeu dans lequel vous devez résoudre des petits problèmes mathématiques et informatiques. Chaque jour, je vous donnerai des pièces du puzzle codées par un
code couleur. Votre tâche est de retrouver le code de chaque image et de les décoder ! À la fin du mois, les pièces se combineront pour former une
image de Noël.
J'ai demandé une Graph 35+E II à Casio pour récompenser la première personne qui résoud le puzzle. Casio a confirmé qu'ils sont d'accord, je pourrai donc envoyer le lot dès que je l'aurai reçu.
Voici l'énoncé précis du jeu !
Le but du jeu est de reconstituer intégralement l'image de Noël. Il s'agit d'une image de 128x64 pixels en quatre niveaux de gris (noir, gris foncé, gris clair, blanc). Il y a 128 pièces à ce puzzle, que je distribuerai tous les jours jusqu'à Noël.
Pour participer, envoyez-moi un MP avec votre image. La personne qui aura reconstitué le plus fidèlement l'image le 24 Décembre à 23h59 remportera le Puzzle et aura le titre de
Maître du Puzzle.
Toutes les personnes qui m'auront envoyé une participation ayant plus de 90% de pixels justes (soit 7372 sur 8192) auront également le titre.
Les pièces sont réparties en quatre cadrants comme ceci :
Contrairement à l'année dernière, les indices ne sont pas cachés, donc vous pouvez poser des questions et je vous répondrai dans une certaine mesure (sans révéler les résultats). Donc n'hésitez pas à demander dans les commentaires si vous avez du mal, je donnerai des explications !
Tous à vos postes, on commence maintenant !
Notes du futur.
• Le 23 Décembre, Filoji a reconstitué l'intégralité de l'image !
• La solution des problèmes est disponible au format PDF !
Liste des indices et pièces de l'image
1er Décembre
Pour les premiers jours, on va se concentrer sur le code couleur. Toutes les images, sauf la première, ont été un peu modifiées et bougées. Le
carré code à droite de chaque image indique quelle opération j'ai faite.
Les pièces ont été agrandies fois 2 (elles font 16x16 pixels au lieu de 8x8), je vous conseille de les réduire avant de commencer à travailler avec.
2 Décembre
Contrairement à hier, aujourd'hui les transformations se marchent un peu sur les pieds. Il faut donc trouver la bonne façon de les combiner...
Sinon le principe est exactement comme hier. Si vous avez déjà utilisé des couleurs en programmation, ça vous posera pas de problème.
3 Décembre
Il n'y a rien de vraiment nouveau, mais parfois durant les problèmes j'aurai besoin de transformer les pièces plusieurs fois.
4 Décembre
Vous avez déjà tous les éléments concernant le fonctionnement du code couleur. Désormais, on va jouer un peu avec des problèmes de maths et d'informatique.
Attention, ne vous précipitez pas car j'ai
mélangé les carrés codes.
Pour retrouver qui va avec qui, voici une aide. L'image ci-dessous représente un
graphe, avec des
noeuds (les ronds) et des
arêtes (les traits). Les noeuds de gauche représentent les pièces d'aujourd'hui, les noeuds de droite représentent les carrés codes mélangés.
J'ai fait en sorte que chaque pièces à gauche soit reliée par une arête à son carré code à droite. Mais j'ai aussi rajouté des arêtes inutiles pour vous embêter.
Votre tâche est de retrouver l'unique façon de faire correspondre les pièces avec les carrés codes par des arêtes. Ça s'appelle un
couplage parfait.
5 Décembre
Cette fois, j'ai
mélangé les pièces. Pour retrouver l'ordre correct, vous devez trier les nombres inscrits à gauche des pièces par ordre de qui se divise le mieux. L'image à côté du nombre qui se divise le moins bien se décode par le carré code
#. L'image à côté du nombre qui se divise le mieux se décode par le carré code
O. Tout le reste est dans l'ordre, vous verrez qu'il n'y a pas d'ambiguité.
6 Décembre
Aujourd'hui, j'ai encodé toutes les pièces avec
le même carré code. Pour trouver lequel, utilisez le programme Python suivant. Vous devez chercher
n et
m de sorte que la fonction
A renvoie 61. Caclulez alors
n*m%6 et vous aurez le numéro du carré code à utiliser. (Ils sont numérotés de 1 à 6 de haut en bas).
def A(m, n):
if m == 0:
return n+1
elif n == 0:
return A(m-1, 1)
else:
return A(m-1, A(m, n-1))
7 Décembre
Là encore j'ai été sympa, j'ai tout codé avec le même carré code. Pour savoir lequel, utilisez le graphe ci-dessous. Dans ce graphe, il y a des
arêtes pleines et des
arêtes pointillées, et un noeud marqué par un double trait. Je prétends qu'il existe une suite de "plein" et de "pointillé" telle que peu importe d'où vous partez, si vous suivez des arêtes du type indiqué par la suite, vous arriverez toujours au noeud marqué.
Le numéro du carré code à utiliser aujourd'hui est la longueur de la plus petite séquence de "plein" et "pointillé" qui a cette propriété.
Cela s'appelle un
mot synchronisant.
8 Décembre
Pas d'indice, vous devriez trouver tous seuls quelle pièce a été encodée comment.
9 Décembre
Je continue sur mon format simple pour l'instant, j'ai tout encodé avec le même carré code (j'espère que ça vous simplifie un peu le travail). Lequel ? Tout est inscrit dans le graphe ci-dessous.
Ce graphe contient un certain nombre de
cliques. Une clique, c'est k sommets différents qui sont totalement reliés entre eux. Cela signifie que si vous regardez deux des sommets, il y a forcément une arête entre les deux. Pour avoir une clique de taille k, il faut donc que chacun des sommets soit directement reliés aux k-1 autres !
La taille de la plus grande clique dans ce graphe est le numéro du carré code à utiliser aujourd'hui. Et pour votre information, ce problème de la
clique maximale est très difficile à résoudre (on ne connaît pas d'algorithme rapide qui trouve la plus grande clique d'un graphe).
10 Décembre
Comme d'habitude, un des carrés codes a été utilisé pour coder toutes les image. Pour retrouver lequel, déterminez le chiffre des dizaines dans le prochain élément de cette suite suite relativement connue.
18, 9, 28, 14, 7, 22, 11, 34, 17, ?
11 Décembre
Le programme ci-dessous affiche le numéro (toujours entre 1 et 6) du bon carré code... si vous arrivez au bout.
def h(x):
return not not x and g(x - (not not x))
def g(x):
return not x or h(x - (not not x))
a = 67091015026795951534974163063551679485
b = 14869428421844477043415143396333267370
c = 18130045244705851716678308487239340348
d = 27737016800392073340078206984446832421
e = 27050830777865150327799699254308046502
f = 31380753929535438225805729259152129373
print(h(a) + g(b) + h(c) + g(d) + h(e) + g(f))
12 Décembre
Comme d'habitude, un seul carré code a été utilisé pour tout encoder. Aujourd'hui, ils sont numéros de 0 (le plus haut) à 5 (le plus bas). Pour savoir quel carré j'ai utilisé, trouvez un chemin le plus long possible de s à t dans le graphe ci-dessous, et calculez sa longueur modulo 6.
13 Décembre
Les pièces sont de nouveau numérotées de 0 à 5. Trouvez p et q non triviaux tels que p×q = 142941853471579. Le numéro de la pièce aujourd'hui est égal au modulo 6 de p. Pour vous aider, sachez que le modulo 6 de q doit désigner la même pièce.
14 Décembre
Comptez le nombre de triangles dans le graphe du 9 Décembre. Un triangle, c'est quand trois noeuds sont complètement reliés entre eux (une clique de taille 3). Le résultat modulo 6 est le numéro du carré code permettant de décoder les pièces d'aujourd'hui, comptées de 0 à 5.
Pour les gens très chauds type
Dark Storm : Compter le nombre de mineurs isomorphes à K₃. Programme fortement conseillé.
15 Décembre
Comptez le nombre de façons différentes d'obtenir 15 par somme de 5, 2, 1 (sans prendre l'ordre en compte). Par exemple, 5+5+2+2+1, ou 2+2+2+2+2+2+1+1+1. Le nombre de façons modulo 6 est le numéro du carré code d'aujourd'hui.
Pour les gends très chauds type
Dark Storm : Compter le nombre de façons, toujours sans prendre l'ordre en compte, mais avec le parenthésage. Par exemple, ((5+5)+(2+2))+1 ou ((5+5)+2)+(2+1).
16 Décembre
Les carrés code sont encore numérotés de 0 à 5. Pour trouver le bon, déterminez le nombre d'arêtes minimum qu'il faut enlever pour couper la grille de taille 5 (ci-dessous) en deux parties :
Ça s'appelle une
coupe minimum.
Pour les gens très chauds type
Dark Storm : Trouver la coupe minimum du tore n×n pour tout n.
17 Décembre
Prenez la liste [7,4,2,5,1,3,6]. Elle n'est pas croissante, mais en supprimant des éléments on peut la rendre croissante. Par exemple, si je supprime 7, 4, 5 et 1, il me reste [2,3,6] qui est croissante. On appelle ça une sous-liste croissante (rien de surprenant ici).
Comptez le nombre de sous-listes croissantes de [7,4,2,5,1,3,6].
Pour les gens très chauds type
Dark Storm : Caractériser le nombre de sous-listes croissantes de taille 2 dans la liste [σ(i) : 1 ≤ i ≤ n] pour σ ∈ Sn (permutations de {1..n}).
18 Décembre
Aujourd'hui on ne fait pas très intellectuel, voici les pièces et leurs carrés codes associés, comme les premiers jours. Rassurez-vous, c'est pas aussi méchant.
19 et 20 Décembre
Pas de codage pour aujourd'hui. On arrive à la fin !
21 Décembre
Comptez le nombre de faces de la rosace au dos de la Graph 35+E II !
Il s'agit du nombre de face sur la rosace complète (la Graph 35+E II étant rectangulaire, elle n'est pas imprimée entièrement). Vous pouvez le faire sans quitter votre chaise, y compris si vous n'avez pas de Graph 35+E II.
Calculez le nombre de faces modulo 157, 97, 79 et 71. L'un de ces modulos a une parité différente des autres, et il correspond au carré code à utiliser pour déchiffrer les 8 pièces centrales.
22 Décembre Il y a des schémas de la rosace dans le manuel.
23 Décembre À cause des symétries de la rosace, il suffit de compter environ 4% des faces.
Fichier joint
Citer : Posté le 03/12/2019 19:47 | #
Juste question qui'aidera pas : tu as fait tout ça avec un logiciel ou a la mains ?
Citer : Posté le 03/12/2019 19:54 | #
J'ai utilisé GIMP pour créer l'image originale, ensuité j'ai programmé toutes les transformations et j'ai dessiné les carrés codes. J'ai quasiment jamais fait les opérations à la main sur les images...
Citer : Posté le 03/12/2019 20:05 | #
Toutes les parties d'une seule et même couleurs sont-elles une seule partie ou bien plusieurs si elles sont séparées cf. Day 3 img. 6
Citer : Posté le 03/12/2019 20:06 | #
Comme dit précédemment, elles sont à traiter séparément (mais attention, il y a du rouge dans le jaune, dans le violet et dans le blanc...).
Citer : Posté le 03/12/2019 20:32 | #
Toutes les pièces n'ont pas été donné dans un ordre définit en fonction du jour ?
Citer : Posté le 03/12/2019 20:34 | #
Il n'y aucun ordre défini. Les premières pièces sont proches cependant, pour vous aider à vérifier que vous avez compris le codage.
Citer : Posté le 04/12/2019 10:20 | #
Bonjour je viens d'arriver sur le forum je vais essayé de participer au concours
Citer : Posté le 04/12/2019 10:34 | #
Bienvenue ! N'hésite pas à lire les commantaires de ce fil, qui contiennent beaucoup d'indices, ou à poser des questions.
Ajouté le 04/12/2019 à 10:43 :
Voici les pièces pour aujourd'hui. Vous avez déjà tous les éléments concernant le fonctionnement du code couleur. Désormais, on va jouer un peu avec des problèmes de maths et d'informatique.
Attention, ne vous précipitez pas car j'ai mélangé les carrés codes.
Pour retrouver qui va avec qui, voici une aide. L'image ci-dessous représente un graphe, avec des noeuds (les ronds) et des arêtes (les traits). Les noeuds de gauche représentent les pièces d'aujourd'hui, les noeuds de droite représentent les carrés codes mélangés.
J'ai fait en sorte que chaque pièces à gauche soit reliée par une arête à son carré code à droite. Mais j'ai aussi rajouté des arêtes inutiles pour vous embêter.
Votre tâche est de retrouver l'unique façon de faire correspondre les pièces avec les carrés codes par des arêtes. Ça s'appelle un couplage parfait.
Citer : Posté le 04/12/2019 10:57 | #
mon cerveau est en train d'exploser : je n'ai pas compris le bordel des carrés de couleur comme du "code" et aimerais avoir de l'aide
le jeu m'interresse et c'est dommage car l'incomprhéencion me désinterresse
Citer : Posté le 04/12/2019 10:59 | #
Il se passe plein de choses sur le chat ! Pour ne pas désavantager n'importe comment tout le monde, voici un indice qui y a été donné :
Les transformations du jour 1 sont toutes des involutions (si vous les faites deux fois vous retrouvez l'image d'origine).
Les codes couleurs ne changent pas tous les jours au moins ?
Citer : Posté le 04/12/2019 11:17 | #
Qu'est-ce que tu as et n'as pas compris ?
Le principe est le suivant : j'ai transformé les pièces pour vous embêter mais j'ai noté les transformations dans des carrés codes pour que vous puissiez les défaire.
Pour l'instant, concentrons-nous sur le jour 1. Chaque couleur correspond à une transformation différentes. Des exemples de transformations (qui ne sont PAS utilisées, ce sont juste des exemples), ce serait : échanger le gris clair et le gris foncé, faire tourner les rectangles de 180°, échanger la ligne du haut et la ligne du bas...
Les transformations que j'ai utilisées en vrai sont plus simples.
Une fois que tu as trouvé les transformations correspondant au rouge, au vert et au bleu, tu peux décoder toutes les pièces du jour 1. Dans le jour 2, c'est la même transformations. Sauf qu'à certains endroits, j'applique une transformation rouge et une bleue (dans un certain ordre que tu dois trouver), et du coup ça fait du violet dans le carré code !
Voilà un début qui devrait t'aider, j'espère.
Non, pas du tout ! Mais dans le jour 2 elles se combinent (les couleurs se mélangent, comme tu peux le voir) et les opérations combinées ne sont pas des involutions.
Citer : Posté le 04/12/2019 11:24 | #
Facile à retrouver ce couplage
Avec un peu de rigueur et de logique, on retrouve facilement le graphe qui va bien
Citer : Posté le 04/12/2019 11:26 | #
Les problèmes ne sont pas durs. Mais j'ai peut-être sous-estimé la difficulté du code...
Citer : Posté le 04/12/2019 13:19 | #
Nooonnnn c'est très compliqué surtout n'augmente pas la difficulté on risque de ne plus avancer :
Ajouté le 04/12/2019 à 13:30 :
En faite c'est ultra simple ton truc là : 10sec chrono a résoudre
Citer : Posté le 04/12/2019 13:34 | #
Hein, y'a pas de rotation 180° ?!?!?! Je suis perdu
Citer : Posté le 04/12/2019 13:35 | #
Que veut tu dire ?
Citer : Posté le 04/12/2019 13:37 | #
Pour l'instant, concentrons-nous sur le jour 1. Chaque couleur correspond à une transformation différentes. Des exemples de transformations (qui ne sont PAS utilisées, ce sont juste des exemples), ce serait : échanger le gris clair et le gris foncé, faire tourner les rectangles de 180°, échanger la ligne du haut et la ligne du bas...
Citer : Posté le 04/12/2019 13:40 | #
Et bien c'est clair : tu as des transformation symétrique ou d'axe, voire de couleur...
Citer : Posté le 04/12/2019 14:03 | #
Et bien c'est clair : tu as des transformation symétrique ou d'axe, voire de couleur...
Bravo pour le spoil
Citer : Posté le 04/12/2019 14:06 | #
En même temps bon, Lephé avait tout dis, à un moment… C'est plus du spoil du coup.
Citer : Posté le 04/12/2019 14:14 | #
Bravo pour tes 1000 points Breizh
Ajouté le 04/12/2019 à 15:09 :
Mis à jour le post principal, merci à @Filoji de me l'avoir rappelé.