Les membres ayant 30 points peuvent parler sur les canaux annonces, projets et hs du chat.
La shoutbox n'est pas chargée par défaut pour des raisons de performances. Cliquez pour charger.

Forum Casio - Vos tutoriels et astuces


Index du Forum » Vos tutoriels et astuces » Rotation d'une image autour d'un point (Basic)
Drak Hors ligne Rédacteur Points: 1925 Défis: 40 Message

Rotation d'une image autour d'un point (Basic)

Posté le 30/06/2016 12:32

Bonjour, bonsoir, mes salutations.

Je voulais proposer, pour ceux que ça intéresserait, Un programme vous permettant d'obtenir vos images/objets dont les coordonnées des points sont contenues dans une liste après rotation autour d'un point.

Pour cela, nous allons utiliser les complexes et les radians.

Admettons que votre dessin soit contenu dans les listes 2 (X) et 3 (Y).
On va d'abord définir une liste (list 1) qui contient les affixes des points correspondant aux listes 2 et 3.

List 2+[b]i[/b]List 3→List 1
Dim list 1→Tθmax "On va utiliser la fonction Graph(X,Y)"


Il s'agit maintenant de faire tourner chaque point autour de l'origine grâce aux fonctions Arg et Abs (Argument et Module d'un complexe).
Pour ceux qui ne connaissent pas bien les complexes, rappelons qu'un complexe peut s'écrire (sous forme algébrique) sous la forme z = a + b i avec a et b des réels (et i tel que i²=-1)
La partie réelle d'un complexe définit l'abscisse du point et la partie imaginaire définit son ordonnée :
z = a + b [b]i[/b]
Rep z = a "Partie réelle de Z"
Imp z = b "Partie Imaginaire de Z"

L'argument d'un complexe traduit l'angle entre le vecteur unitaire des abscisses (u, par exemple) et la demi-droite [OZ) avec O l'origine du repère et Z le point d'affixe (=de coordonnées) z = a + b i. Le module de z traduit quant à lui la longueur OZ.

Bref, (re)passez la terminale S si vous ne comprenez rien.

C'est là que ça devient intéressant. Vous vous connaissez du cercle trigonométrique, cette merveille ?



Ce qui m'intéresse, c'est que dans ce cercle (de rayon 1), X = cos(t) et Y = sin(t) avec t l'angle sur l'image.
Avec les complexes, ça nous donne a = cos (arg z) et b = sin (arg z) avec arg z l'argument de z... Mais pas tout à fait. Le cercle trigonométrique est de rayon 1. On multiplie ces valeurs par le module (distance OZ) pour obtenir ce que l'on veut :
donc on a :
a = (module de z : )|z|*cos (arg z)
et b = |z| * sin(arg z)


Seulement, on souhaite faire tourner ce point d'affixe z. On va donc augmenter (ou diminuer) l'argument de z, c'est-à-dire l'angle entre l'axe des abscisses (le vecteur directeur u) et la demi-droite [OZ). Prenons une rotation de π radians, et z'=a' + i b' le nouvel affixe du point Z après rotation.
Alors :
a' = |z|*cos(π + arg z)
et b' = |z|*sin(π + arg z)

C'est bien beau tout ça, mais on va où ? Akwasasert ?

Ne paniquez pas. Nous y sommes. Ce code consistera donc à modifier tous les affixes de tous les points en les faisant tourner de θ radians. Mais il manque un détail : Cela ne fonctionne que pour les rotations autour de l'origine du repère. Nous allons donc définir au préalable un point de coordonnées (I , J) qui fera office de centre de rotation (en général le centre de l'image). En faisant l'opération List 1 - ( I + i J ), le centre de l'image coïncide avec l'origine. Voici donc comment tout cela se met en place :

Cliquez sur moi pour me dérouler
Cliquez sur moi pour m'enrouler

?→I
?→J
?→θ
List 2 - I + [b]i[/b](List 3 -J→List 1
Dim List 1→Tθmax
For 1→A To Tθmax
List 1[A→B
Abs (B)((cos (θ+Arg B) + [b]i[/b]sin (θ+Arg B→List 1[A
Next
List 1+I+[b]i[/b] J→List 1


Voici une idée de code. Bien sûr, les techniques peuvent varier et sont plus ou moins efficaces selon les situations.
Je vous renvoie sur ce Tutoriel de neuronix qui donne également une très bonne piste dans cette optique.

Mais comment s'en servir ?

J'ai conçu ce code pour mon futur programme de jeu en basic casio. Si vous avez un personnage portant une arme et donnant un coup avec, par exemple, il est évident que vous n'allez pas vous amuser à réécrire les trois (ou cinq, voire dix... soyons fous.) listes différentes pour un même objet qui ne fait que tourner. Pour une image avec peu de points, vous pouvez également créer des animations, pourquoi pas. Les possibilités sont multiples et ce code me permet d'approfondir l'utilisation des graphismes en basic.
Je l'ai donné un peu brut, c'est fait exprès. Vous pouvez vous le réapproprier, vous en inspirer ou l'employer tel quel. It's up to you, guys!


Nota bene : Vous pouvez rencontrer des soucis dès lors que votre point de coordonnées I, J coïncide avec l'un des points de votre dessin. La machine vous indiquera une erreur lors du calcul de l'argument d'un point d'affixe 0. Une astuce consisterait à employer une valeur de I ou de J très légèrement différente (de 0.1, par exemple) pour que le code fonctionne et que votre dessin semble bien tourner !

Fichier joint


Dark storm Hors ligne Labélisateur Points: 11641 Défis: 176 Message

Citer : Posté le 01/07/2016 17:41 | #


En gros t'as ça :

Y = MX


Avec Y la matrices des nouvelles coordonnées (2×1 si en 2D, 3×1 si 3D)
M la matrice de rotation (2×2 ou 3×3)
X la matrice des anciennes coordonnées (2×1 ou 3×1)
Finir est souvent bien plus difficile que commencer. — Jack Beauregard
Drak Hors ligne Rédacteur Points: 1925 Défis: 40 Message

Citer : Posté le 01/07/2016 17:43 | #


ow, wonderful. Je n'y aurais sans doute jamais pensé de toute ma maigre existence...
Eon the Dragon : version 1.2
Let's have a look!
Marre de ces RPGs qui t'imposent des classes, des compétences et des sorts ? Crée tes propres capacités sur Eon the Dragon ! Des monstres, des dragons et des combats aussi épiques que difficiles t'attendent !
Un RPG unique et immense t'attend ! Joue dès maintenant à Aventura, le Royaume Poudingue !
Vous aussi, soyez swag et rejoignez Planète Casio !
Lephenixnoir En ligne Administrateur Points: 24673 Défis: 170 Message

Citer : Posté le 01/07/2016 17:44 | #


Drak a écrit :
Est-ce que quelqu'un pourrait m'expliquer le principe de vos "matrices de rotation" ?!

Je vais donner une explication à part, pour la complétude peut-être.

Considérons un espace muni d'une base : disons le plan et sa base « classique » constituée des vecteurs i = (1, 0) et j = (0, 1). Considérons maintenant une transformation linéaire, c'est-à-dire qui vérifie « f(constante * point) = constante * f(point) ». Le concept peut sembler bizarre mais ça relève de l'étude des espaces vectoriels.

Dans le plan, il y a surtout deux types de transformations linéaires qui nous intéressent : les rotations, et les homothéties. Je pense que les rotations c'est assez intuitif : on va préciser que ce sont les rotations autour de l'origine. Les homothéties dilatent le plan autour du centre : on peut dire qu'elles multiplient le module des nombres complexes sans changer leur argument.

La propriété des transformations linéaires c'est qu'elles peuvent se représenter par des matrices. Pour ça, il suffit de considérer l'image des vecteurs de la base. Lorsqu'on fait une rotation de θ autour du centre O, je te laisse vérifier avec le cercle trigo qu'on a :
r_θ(i) =  cos(θ) * i + sin(θ) * j
r_θ(j) = -sin(θ) * i + cos(θ) * j

On obtient alors la matrice simplement : il suffit de recopier les coefficients qu'on a écrits sans les déplacer :
R_θ = [   cos(θ)   sin(θ)   ]
      [  -sin(θ)   cos(θ)   ]

Ensuite, il faut rappeler que tout point du plan se décompose de manière unique dans la « base » (i, j). (Le concept de « base » est propre à l'étude des espaces vectoriels. En gros, une base est un ensemble de vecteurs sur lesquels tout vecteur de l'espace se décompose de manière unique). Étant donné un point X, on peut donc écrire X = x * i + y * j car x et y existent et sont uniques. On représente généralement un tel point par la matrice [[x][y]] (notation calto).

En fait la magie se trouve dans le fait que appliquer la transformation revient à calculer le produit matriciel. Si l'on fait le produit matriciel R_θ * X, on a en effet :

r_θ(x) = (cos(θ) * x - sin(θ) * y) * i + (sin(θ) * x + cos(θ) * y) * j)

Tu retrouves donc les formules que Ninestars et moi avons utilisées (en stockant les coordonnées sur i et j dans deux listes, ou dans les parties réelles et imaginaires de complexes).

Ce concept se généralise à l'espace en trois dimensions. On peut aussi représenter des transformations affines (notamment des translations) en trichant un peu.
Mon graphe (11 Avril): ((Rogue Life || HH2) ; PythonExtra ; serial gint ; Boson X ; passe gint 3 ; ...) || (shoutbox v5 ; v5)
Drak Hors ligne Rédacteur Points: 1925 Défis: 40 Message

Citer : Posté le 01/07/2016 17:48 | #


Je pense que je dormirai moins idiot à l'avenir. Les maths, c'est mâââââgique.
Et dire que je n'en ferai plus !
Eon the Dragon : version 1.2
Let's have a look!
Marre de ces RPGs qui t'imposent des classes, des compétences et des sorts ? Crée tes propres capacités sur Eon the Dragon ! Des monstres, des dragons et des combats aussi épiques que difficiles t'attendent !
Un RPG unique et immense t'attend ! Joue dès maintenant à Aventura, le Royaume Poudingue !
Vous aussi, soyez swag et rejoignez Planète Casio !

LienAjouter une imageAjouter une vidéoAjouter un lien vers un profilAjouter du codeCiterAjouter un spoiler(texte affichable/masquable par un clic)Ajouter une barre de progressionItaliqueGrasSoulignéAfficher du texte barréCentréJustifiéPlus petitPlus grandPlus de smileys !
Cliquez pour épingler Cliquez pour détacher Cliquez pour fermer
Alignement de l'image: Redimensionnement de l'image (en pixel):
Afficher la liste des membres
:bow: :cool: :good: :love: ^^
:omg: :fusil: :aie: :argh: :mdr:
:boulet2: :thx: :champ: :whistle: :bounce:
valider
 :)  ;)  :D  :p
 :lol:  8)  :(  :@
 0_0  :oops:  :grr:  :E
 :O  :sry:  :mmm:  :waza:
 :'(  :here:  ^^  >:)

Σ π θ ± α β γ δ Δ σ λ
Veuillez donner la réponse en chiffre
Vous devez activer le Javascript dans votre navigateur pour pouvoir valider ce formulaire.

Si vous n'avez pas volontairement désactivé cette fonctionnalité de votre navigateur, il s'agit probablement d'un bug : contactez l'équipe de Planète Casio.

Planète Casio v4.3 © créé par Neuronix et Muelsaco 2004 - 2024 | Il y a 66 connectés | Nous contacter | Qui sommes-nous ? | Licences et remerciements

Planète Casio est un site communautaire non affilié à Casio. Toute reproduction de Planète Casio, même partielle, est interdite.
Les programmes et autres publications présentes sur Planète Casio restent la propriété de leurs auteurs et peuvent être soumis à des licences ou copyrights.
CASIO est une marque déposée par CASIO Computer Co., Ltd